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Abstract 

Many types of forced systems are known intuitively to undergo an irreversible behavior, 
in which all information about the initial conditions is eventually forgotten. These turn 
out to be the dynamic analogs of a system in an arbitrary initial state but connected 
to a static thermal reservoir and approaching equilibrium with that reservoir. The static 
and dynamic cases are intercombined into a single unified theory. This is based on a 
modified Hamiltonian and Liouville density dynamics, which explicitly includes irrever- 
sibility. Special contact transformation methods are used. The driving mechanism is 
generally quantal, incoherent, and of arbitrary character, not necessarily electromagnetic. 

1. Introduction 

The physical type o f  the irreversible behavior considered here is first 
exemplified in two well-known cases: 

(a) A system capable of  thermodynamic  equilibrium is connected to a 
static reservoir (of  definite temperature,  chemical potentials,  etc.). The 
system comes to forget all of  its initial condit ions as i t  moves toward 
equilibrium with the reservoir. 

(b) A linear dampled oscillator, electrical or mechanical,  is connected to a 
driving source. The oscillator comes to forget all its initial condit ions 
(as it  moves for example to an a.c. steady state). 

Consider also two less quantified examples, based at the moment  on intui t ion 
and common experience: 

(c) A realistic system, with non-constant thermal properties,  has its surface 
prescribed at temperature and chemical potentials that vary over the 
surface and with time. Then the condit ion of  the interior,  temperature,  
chemical potentials,  etc. depend on t ime and position. However, they 
eventually lose all memory of  the system's initial conditions.  

(d) A passive electrical network (with realistic non-linear temperature- 
dependent  components)  is connected to a time-varying voltage source, 
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within a given temperature environment (constant or prescribed in time). 
One intuitively expects the current response to eventually be independent 
of the network's initial conditions (for example its initial temperature 
which might be different from that of the environment). Conversely, if 
the network is connected to a time.varying current generator, then the 
voltage response will eventually be independent of initial conditions. 

Broader physical examples, most of them intuitively familiar, are summarized 
in Section 8. 

The various physical examples bear obvious similarity. The main purpose of 
the paper is to unify these within a single theoretical framework and provide 
them with a rigorous foundation. 

The unification was begun in an earlier work (Kohler, 1968a, b, 1969) within 
the limited context of forcing by applied coherent classical electromagnetic 
fields. This context turns out to be inadequate to cover must physical cases. 
For example (c) is not covered because the driving mechanism is incoherent 
and not electromagnetic. Aslo (d) is not covered because the electromagnetic 
fields inside the network are not prescribed (Kohler, 1969, Section 14.9). 

Another inadequacy of the earlier work was its basis upon idealized 
Hamiltonian dynamics. This has since been shown insufficient to predict 
irreversible phenomena (Wu, 1969). 

In the present work, idealized Hamiltonian and Liouville density methods 
(Section 2) are modified to a realistic form that includes irreverisble behavior 
(Section 3). Time-dependent forcing is established by decomposing a system 
into two Liouville densities, of which one is prescribed, and the other the 
response or driven (Section 5). The driving density is general and not restricted 
to being coherent, classical, or electromagnetic. The known irreversible behaviour 
of the well-insulated system (Section 4) is extended (Section 7) by special contact 
transformation methods (Section 6) to cover a time-dependently forced system. 

2. Physical Sys tem 

We begin with the abstraction of an 'infinite' system. This contains generally 
many different kinds of particles or fields which are ('second') quantized 
(Fujita, 1966). 

The quantum dynamics is given by a time-dependent conservative Hamil. 
tonian and unitary time displacement operator 

i;h a t U = HU,  U ¢ = U -  1, U = U(tto),  U(to to) = I (2. la, b, c, d) 

A more convenient description is by the Liouville density (George et  al., 
1972) p for obtaining the expectation value (M) for any operator 

ih ~tP + [P, H] = O, p( t )  = U(tto)P(to)U~(tto) ,  Tr p = 1, 
(M) = Tr p M  (2.2a, b, c, d) 

The corresponding classical formulation is presented for convenience in 
classical limiting cases (Finkelstein, 1973; Fujita, 1966): 

H = g ( q p  ), ~l ] = ~}H/~p ], 13j = - ~}g/aq j (2.3a, b) 
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q = q(q p t), p = p(q p t), q = q(to) p = P(to) (2.4a, b) 

~tP + [p,H] = 0 or p(qpt) = p(q'(qpto), p'(qpto), to) 
(2.5a, b) 

f p  d r  = 1, (M(qpt)) = f p M  dP (2.6a, b) 

3. Realistic System 

It is assumed that the system variables are decomposed into two kinds 1, 2. 
These may be distinguished in any way, for example different particle types, 
or different space regions separated by stationary or moving boundaries. Then 
the Liouville density and Hamiltonian are denoted. 

P =P12, H=H12=H(D +H(2) +/'/(12) (3.1a, b) 

Partial densities (Jaynes, 1957a, b) may be specified as, 

p~ = fP12dF2 or Pl =Tr2p12 (3.2a, b) 

and by (2.6a), (2.2c) satisfy, 

f Pl dPl = 1 or TriP1 = 1 (3.3a, b) 

A special case of (3.1 a) is 'uncorrelated' densities 

P--PlP2, [Pl, P2] = 0  (3.4a, b) 

For an experiment in which p2(t) is prescribed or maintained, then pl( t )  is 
governed by its own Hamiltonian: :~ 

H1 =H(I) + f P2H(12) dP2 o r  H I = H(1 ) + Tr2P2H(12 ) 
(3.5a, b) 

The prescription of Pz (t) is limited to physically realizable states for the over- 
all system. 

Also, p2(t) must experimentally include at least a small random part 
P2r(at) in addition to the deterministic part P2d(t), 

o2(at) = ;2a(t)  + ;2 (at) (3.6) 

~: Equation (3.5) is obtained from (2.5a) or (2.1a), (3.1), (3.3), (3.4) and the classical 

[M,N] = [M,N h + [M,N]2 , S [M,N]2dF2 = 0 
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The random variable(s) a are governed by a probability distribution f(a): 

ff(a) da = 1 or ~ f(ai) = 1 (3.7a, b) 
i 

Then H 1 (3.5) is the sum of determinsitic H a and small random Hr: 

Hi(at) =Ha(t) + Hr(at), ( H  r )  ~ 0 (3.8) 

Ha = z-zo) + fo=aH02) dr'2 or Ha = H0) + Tr2p2aH02 ) 
(3.9a, b) 

Hr = fP2rH(12) dr2 or H~ = Tr2p2rH(12) (3.10a, b) 

From HI (at) each p 1 (a t )  is obtained by Hamiltonian dynamics (Section 2): 

pl(at)  = pa(q'(qpta), p'(qpta), to) or px(at) = U(ttoa)p(to)Ut(tto a) 
(3.11a, b) 

The overall Liouville density p 1 (t) is then obtained averaging (Jaynes, 1957a, 
b) 

p , (O = f f(~)p(~t)da o r  Pl(t) = E f(ai)p(ai t) (3.12a, b) 
i 

Now P l(t) obeys (2.6) and (2.2c, d) but not Hamiltonian dynamics (2.5) and 
(2.2a, b). 

4. Well-Insulated System 
The isolation of any phyiscal system is never complete. A well-insulated 

system may be regarded as a subsystem Pa (Section 3) under H 1 (3.5) with 
//(12 ) small. 

Typical quasi-conserved quantities X(1) are: 
n(1 ) total relativistic energy of 1; 
H(j) total relativistic energy of any well-insulated subsystem of 1 ; 
N(O any particle numbers that are conserved because of restrictive walls 

or inadequate energy for particle ~ creation or annihilation; 
Y(g) other quantities, like total linear and angular momentum vectors (for 

a system that is free to move) (Grad, 1952a, b). 

Each of the conservation laws is approximate: 

[X(t),Hl(at)] -0 ,  X(O =Ho),H~j),N(o, Y(k) 
and meaningful only within a sufficiently short time scale.$ 

(4.1a, b) 
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Any Liouville density depending only on the quasi-conserved quantities is 
quasi-stationary (2.5a, 2.2a) 

8 t p l(Xta) = const. [p I (Xta), ]-I 1 (at)] -" 0 (4.2) 

4.1. Probability Distribution for Quasi-Conserved Quantities 
P is defined through a representation choice with the quasi-conserved 

quantities X as generalized momenta  (c) or diagonal (q): 

dP  = d P ,  dX or Tr = T r ,  Trx  

P(X) = f o l  d F ,  or P(X) = T r , p  1 

These by O-3)  satisfy, 

I P(X) dX = 1 or T r x / ' ( X )  = 1 

Also, P is quasi-stationary by (2.5 a), (2.2a): 

0to= ot f at, = f ~tPl d r .  = f [HI,/911 dr, ~" f [H(I), Pl] d r .  

= In(l),  f /91  din,] = = 0 (4.1.4) 

ih ~tP = ifi ~t Tr,/91 = T r , i h  ~t/91 = T r ,  [Hb  Pl] "-" T r ,  [H(I),/91] 

= [Ho),  Tr,/911 = [H(1),PI = 0 (4.1.5) 

(4 . t , l a ,  b) 

(4.1.2a, b) 

(4.1.3a, b) 

4.2. Liouville Densities o f  Maximum Entropy 
The relative likelihood for a given Liouville density is measured by its 

entropy (ter Haar, 1955): 

S l = - k ( l n p ) ,  S l = - k  f191 l n p l d P  1 or S l = - k T r p t t n p l  
(4.2.1 a, b, c) 

For a given P(X) the maximum entropy Liouville density is: § 

Plrn = ~2-t(X)P(X) or Plrn = g-I(X)P(X); (4.2.2a, b) 

~2(X) = phase volume of  manifold of  d P , ;  g(X) = degree of  degeneracy. 
This density is eventually reached ¶ by any system known to reach therme- 

For a sufficiently long time-scale, all conservation laws vanish, and the insulated 
approximation becomes invalid. 

§ The proof is a slight variation of that for 'energy shells' (ter Haar, 1955, Sections 
C(1), D(2)). 

¶ Conversion of Pl to Plm is excluded by pure Hamiltonian dynamics (which con- 
serves S) but is allowed by our modified Hamiltonian dynamics (ter Haar, 1955 ; Jaynes, 
1957a, b; Wu, 1969). 
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dynamic equilibrium (within the same time scale as (4.1)). P(X) remains equal 
to that of the initial density. 

In the Gibbs 'inky water' model (ter Haar, 1955; Farquar, 1964) the phase 
fluid (taken under pure Hamiltonian dynamics) retains its volume as it thins 
out and fills the X 'shell' uniformly. Any small additional averaging produces 
true uniform filling. Such averaging is an automatic part of the (modified 
Hamiltonian) dynamics already discussed:~, § (3.12). 

5. Time-Dependent ly  Forced Sys tem 

Explicit time dependence in H 1 appears when the prescribed P2 has such 
dependence. 

A special case is where P2 refers to classical coherent electromagnetic fields 
(limited by MaxweU's equations in the medium). That was the main example 
of an earlier paper (Kohler, 1969). The present paper covers more broad 
situations, where P2 may be quantal, incoherent, and non-electromagnetic 
(Section 8.3). Also the surfaces of 1 need not be fixed or rigid, as (3.4), (3.5) 
remain meaningful and valid without such restriction. (Sections 8.2, 8.4). 

6. Contact  Transformation to a Prescribed Hamiltonian 

In idealized Hamittonian dynamics (Section 2) with H r ~ 0, a contact trans- 
formation is specified by a generating function (Finketstein, 1973) or a unitary 
operator. Theresult is a transformed representation with transformed 
Hamiltonian H. 

It has been shown quantum dynamically possibleto reverse the procedure 
or first choose the transformed representation and H, and later find a suitable 
unitary G (Kohler, 1969): 

G(t)  = U(t to)Ua(f~(t to) ,  atUa =- 0 (6.1) 

= time displacement operator for/). (6.2) 

Equivalently, (6.1, 6.2) is a general decomposition of any unitary (contact) 
transformation. 

$ The more conventional methods of averaging (ter Haar, 1955; Farquar, 1964) are 
(roughly) included as special choices: 

(a) 'ergodic' (time averaging) Hr(~) = h(a)Hd, ~ small; 
Co) classical 'coarse-graining' Hr(ct#) = ~i(hi (ai )qi  + ki(# i) Pi); 
(c) quantum 'coarse-graining' Hr(~il) = ~'il( I i*>(l* [ + [ l* >(i* l)Xi/(all), where • denotes 

variables of Tr. (4.1.1). 
§ The averaging, although due to random part of the interactions//(12) does not 

influence the gross relaxation rate of p i within the limited time scale considered (Blatt, 
1959). Analysis in which the relaxation rate is due to the interaction with a reservoir, 
refer to a stronger H(12) or longer time-scale, and are not appropriate to the 'insulated' 
approximation (Mayer, 1961; Bergman & Lebowitz, 1955; Lebowitz & Frisch, 1957; 
Gross & Lebowitz, 1956; Klein, 1952). 



IRREVERSIBLE BEHAVIOR OF FORCED SYSTEM 43 

It is now shown that the corresponding reversed procedure is available 
classically. An arbitrary contact transformation is: 

H(qpt),  q = q(~tpt) p = p(~t~t), f f I (~ t )  

original Poisson-Bracket Invariant transformed (6.3) 
Hamiltonian transformation equations Hamiltonian 

This may always be decomposed into three successive transformations: 

q = q(q'p' t)  ~ =_ o q' = q'(~ ' y )  B ' -  o ~' = ~ ' ( ~ t )  £ r ( ~ t )  
H(qpt)  P = p(q'p'  t) P' = P'(?t'P') P' = ~ ' ( ~ t )  

(6.4) 
(a) (b) (c) (d) (e) (f) (g) 

(a) Original Hamiltonian; (b) Equations of mot~n under/~; (c) Hamiltonian for constants; 
(d) Transformation to initialcondifions under H; (e) Hamiltonian for constants; (f) Inverse 
equations of motion under H; (g) Transformed Hamiltonian 

as H, /~  by (2.4) uniquely determine (b), (f) ,  which uniquely determine (d). 
Now if H , /~  and (d) are independently chosen, the transformation (6.4) or 
(6.3) is completely determined. This is the desired classical result. 

A related classical proof  based on the known equation involving the 
generator f ,  

Y, p q J  - H = ~, ~t~t _ ~ + dfq~/dt (6.5) 

Solution for fy ie lds  (Prange, 1935): 

t t 

fq~ = f (~pJqJ - / - / ) d t  + g(q '~ ')  - f ( £~ '~ '  - ~r)dt (6.6) 
to to 

Action integral Integration Action integral 
or Hamiltonian constant or Hamiltonian 
Jacobi principle Jacobi principle 
function function 

fq~ (q?It) = fqq'(qq' t) + fq,~,(q'~') + f~'~(~l'gtt) (6.7) 

Thus the generator fq~ is uniquely determined by H, H and fq'~'. (The method 
of adding generators for composite transformations is discussed by Schwinger, 
1970.) 

7. Irreversible Property o f  Forced System 

For a well-insulated system that can reach thermodynamic equilibrium, a 
consequence of  Section 4 is the convergence: If 

P1 I(Xto) - P1 ni(Xto) "- 0 then P t i ( t )  - P llIi(t) -~ - 0 
(7.1a, b) 
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To specify a suitable forced system it is convenient first to regard the well- 
insulated system 1 as factored into two partial densities with a single 04(0 
prescribed for both t) 1 i(t) and p I re(t): 

Pa = PAP4, Ha((3t) = H3a(t) + H3r((3t) (7.2a, b) 

These hold only with suitable hmitations on what degrees of freedom can be 
prescribed (during the natural approach to equilibrium) and how far apart the 
initial p3i(to), 03 in(to) can be. Thereafter the analysis of Section 3 applies, 
with suitable notation change. 

The forced system is then specified by experimentally prescribing 04 in a 
more arbitrary way 04(t): 

(7.3a, b) 

In order to compare the behaviors under/73 vs. H 3 we note the existence 
of contact transformation that connects Haa and Haa but leaves initial con- 
ditions unchanged. Take (6.4d) or U a of (6.1) as the identity: 

Hact(qpt), q = q(qpt), 

qJ(to) = q/(to), 

Haa(qfit), G(t), 

The influence on the total Hamiltonians is: 

B ~ ( ~ t )  ~ = ~(qpt) ~=~(qpt) 
+ ~3, (~f~t) 

= ~(qpt), H~(qpt )  (7.4a, b, c) 

: i( to)  = p/(to) (7.5) 

G(to) = 1, H3a(t) (7.6) 

H3a(qpt) (7.7a, b, c) 
H3e(qpTt) 

(7.8~,~ c) B ~ ( t )  + B3,(~t), a(t) ,  ~l~(t)  + t t~(Tt)  

where H3e denote small random terms (transformed_from _ ~ ) .  
To compare asymptotic behaviors under H3 and H 3 for the same two 

starting densities, 

P3 I( t0)  = P3 I( /0)  ' P 3II/( t0) = fi3III(t0) 

it is convenient to define 

: '03(0  = n3 ~(t) - n3 In(t), 

(7.9a, b) 

Afi3(t) = P3 I(t) -- P3 in(t) 
(7.10a, b) 

which by (7.5), (7.6d) satisfy 

Apa(to) = At53(to) 

By (7.1), (3.2, 3.12), it follows that, 

',, Ap3( t  ) = ~ f~(/~) Ap3(fit  ) d~ -+ - 0 

(7. I 1) 

(7.12) 
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independent offa~ and Hr(3t) except that Hr be random and small. Compute 
now ,xfi 3 classically with (7.7), 

A / 5 3 ( t ) =  f fv (3 ' )  A ~ 3 ( q / 3 v t ) d v  

= f fv(7) Afi3(q(qpt), fi(qpt), 7, t) dT 

= f fv(T) AP3(qpTt) d7 = Ap3(t) (7.13) 

and quantum dynamically with (7.8), 

Afi3(t) = f f3,('Y) A/53(Tt) dT = G f fv(T)G'F Ap3(3't)G dT G* 

= G f f "r( '7) APs(Tt) d7 G* = GZXp3(t)G* (7.14) 

Thus from (7.12), (7.13) and (7.14) we obtain the desired result, 

Afis(t ) ~ - 0 (7.15) 

The summarized results for 

Pi(Xto) - PIu(Xto) - 0 (7.16) 

are 

(unforced) 

(forced) 

p l  I ( t )  - -  p 1111(t) -+ --" O, p3  I ( t )  - -  p3  i n ( t )  -4 ----" 0 (7.t7a, b) 

/~1 I ( t )  - -  /91111(t) -+ -- 0,  /531 ( t )  - -  P3 In ( t )  -> =" 0 (7.18a, b) 

where (7.18) has been inferred indirectly from the known (7.17). 

8. Results and Applications 

8.1. Summary of  the General Theory 

A system p I (t) capable of thermodynamic is assumed factorable p I ( t )  = 

03(004(0 with 04(t) independent of two different (sufficiently close) 
03(0. 

Now if P4(t) = fi4(t) in a forcing experiment is prescribed in a more 
arbitrary way, then the same two P3 starting densities will still converge. 
Equivalently, the eventual p4(t) depends only on the overall 1 systems initial 
value of quasi-conserved quantities like total relativistic energy, energies of 
insulated subsystems, any conserved particle numbers, linear and angular 
momenta, etc. The relevant conserved quantities depend on the particular 
system and time-scale. 

8.2. Movable and Stationary Systems 
The general rules given refer to moving as well as stationary systems. For 

moving systems, a statistical mechanics and thermodynamic has been developed 
(Grad, 1952a, b). 



46 ROBERT H. KOHLER 

8.3. Forcing Over the Full Volume 
If the degrees 3 and 4 occupy the same region of space, then the range of 

3 is restricted for 4 to be prescribed independently. 
An example is where 4 refers to a classical coherent electromagnetic field, 

and 3 the medium. The medium's temperature response changes the resistivities 
and susceptibilities. Field prescribability is meaningful in a suitably restricted 
sense (Kohler, 1969, Sections 14, 15) but, if achieved, the medium's response 
eventually becomes independent of initial conditions. 

In the present work the electromagnetic field p4(t) may be quantal and 
incoherent. Medium pa(t) responses on an atomic level (changes in occupation 
numbers, etc.) may be considered. 

Also, in the present work, the driving agency p4(t) is not necessarily electro- 
magnetic. It may for example be the medium, while the electromagnetic field 
is the response. 

One case is a strong acoustic wave. The electromagnetic field response 
(coupled thermally or piezo elastically) will eventually be indepenent of 
initial conditions (except the overall system's total energy, etc. (Section 8.1). 

8.4. Forcing by a Generalized Reservoir 
We suppose 3 to be small system with a geometrically separate large system 

4 called a 'generalized reservoir'. For the compositie 1 (3 + 4) we finds at the 
initial time 

PI(X) = f P3 (X-  f '~P4(~d f  ( orPa(X') = ~ ~' P3(X' - f(')e4()(') 
(8.4.1) 

Under the assumptions that the width of P3 is much less than the width of 
P4 (the experimental error is proportional to the quantity measured), Pl(Xto) 
is approximately independent of P3 and hence of P3-Thus P3 eventually 
becomes independent of its initial conditions. 

The boundary between 3 and 4 (a physical or a convenient mathematical 
surface) is not necessarily fixed or rigid. Cases where the generalized reservoir 
4 moves, compresses, or distorts 3 are included. 

8.5. The Generalized Reservoir is Also Electromagnetic 
The prescribed Liouville density/94(/) necessarily includes electromagnetic 

degrees of freedom (among others). The reservoir 4 thus imposes an electro- 
magnetic field density (at leas t only thermal) onto 3, eventually independent 
of 3's initial conditions. 

8. 6. Forcing at the Surface 
For some 'special cases, the interaction between (small) system 3 and 

reservoir 4 takes place strictly at the surface of the two. Thus the forcing of 

:~ Equation (8.4.1) is obtained from (4.1.2) by X1 "= X3 + X4 and the variable change, 
X4 =X,  X3 =X1 - X. 
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p3(t) is given by its (time- and space-dependent) surface conditions. These 
impose upon p3(t) a dynamic state that is eventually independent of all of its 
initial conditions (except, energy, etc.) as a special case of Section 8.4. An 
example is Section 1(c). 

8.7. The Approximation o f  Local Equilibrium 

Local equilibrium is a special case with well-defined space time dependent 
entropy per unit volume and entropic intensive parameters. 

The various local parameters are: densities of entropy, energy, particle 
numbers; hydrodynamic velocities; pressure, stress, strain; entropic or energy 
intensive parameters; affinities, fluxes, etc. These parameters are interrelated 
by equilibrium and irreversible thermodynamics (Callen, 1960; de Groot & 
Mazur, 1962; Meixner & Reik, 1959), and may be reduced to a small set of 
independent parameters. 

If the subsystems t, 2, 3 are each in local equilibrium, then their Liou- 
ville densities may be given in standard forms depending only on the minimal 
set. A simplified example is a medium without the hydrodynamic motion, with 
a local grand canonical Liouville density near rl, t specified completely by F z 
and volume size AVl: 

Pl = e x p ( - k - l ( ( S  t) - ~ F i t ( X / ) ) -  k -1 ~ FilXi l} 
i i 

with 

F~. = 3 (S)/3 (X  i ) = entropic intensive parameter. 

( S  t > - ~ F / ( X / >  = a v l f ( F  l) 

p = II lpl (over the full volume) 

Furthermore, surface forcing of 3, if appropriate, is specified by the local 
parameters of 4 in a thin layer adjacent to its surface. Then 3's local parameters 
eventually become independent of its initial conditions. An example is in 
Section l(c). 

8.8. Related Studies from Non-Equilibrium Thermodynamics 

There have been various efforts at obtaining the relations of non-equilibrium 
thermodynamics from an extremum principle, primarily of the entropy. To the 
extent that these are successful, they also give implication of a unique dynamic 
state for specified boundary conditions. 

The direct entropy extremum principle has been fruitful for time-indepen- 
dent boundary conditions or steady state with the Onsager kinetic coefficients 
Lii taken as constants (Prigogine, 1955; de Groot & Mazur, 1962; Donnelly 
et al., 1965). For non-constant coefficients and special cases (isotropy and no 
hydrodynamic motion) a recent theory yields the steady state for extremum 
of another quanti ty-not  the entropy (Van Kampen, 1973). 

One proof indicates the non-existence of a general extremum principle for 
steady states (Donnely et al., 1965, Part 6, p. 283). 
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A modified 'local potential '  or double variational method has been fruitful 
for non-constant coefficients and time-dependent or independent boundary 
conditions (Donnelly et al., 1965). 

In a different sense, the present paper is also based on an entropy extremum 
principle. This is applied directly to a system in equilibrium (Section 4.2) and 
transferred to a forced system by contact transformation methods (Section 7). 

8.9. Quasi-Stationary Circuit 

The physical situation is discussed in Section l(d). 
The response of  a quasi-stationary circuit may be treated with the help of  

Fig. 1. The electromagnetic fields in A are prescribable because A and the 
major part of  the load N are controlled in temperature (and other intensive 
parameters). The prescribed Liouville densities p4(t) are the total density o f  

+ 
A B 

I 

Figure la.-The quasi-stationary circuit 
under a time-dependent voltage. L Current 
generator with arbitrary time variation. 
Effective resistance of N<  effective 
resistance of X. 

A B I. . . . . . . .  

Figure lb.-The quasi-stationary circuit 
under a time-dependent current. V 
Voltage generator with arbitrary time 
variation. Effective resistance of N >> 
effective resistance of X. 

X External load. 
N Internal load. 
A Region of controlled electromagnetic field. 
AB Region of controlled temperature and other intensive parameters. 
C Region of driven circuit where temperature and other intensive parameters are not 

controlled. 

A and the total excepting electromagnetic density of  B. The variable density 
p3(t) is the electromagnetic density of  B and the total density of  C. The latter 
includes the network. Its response by Section 8.1 is eventually independent 
of  its initial conditions. 
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